1,033 research outputs found

    RF measurements I: signal receiving techniques

    Full text link
    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniques concludes the paper.Comment: 24 pages, contribution to the CAS - CERN Accelerator School: Specialised Course on RF for Accelerators; 8 - 17 Jun 2010, Ebeltoft, Denmar

    RF engineering basic concepts: the Smith chart

    Full text link
    The Smith chart is a very valuable and important tool that facilitates interpretation of S-parameter measurements. This paper will give a brief overview on why and more importantly on how to use the chart. Its definition as well as an introduction on how to navigate inside the chart are illustrated. Useful examples show the broad possibilities for use of the chart in a variety of applications.Comment: 22 pages, contribution to the CAS - CERN Accelerator School: Specialised Course on RF for Accelerators; 8 - 17 Jun 2010, Ebeltoft, Denmar

    Status report of the CERN microwave axion experiment

    Full text link
    "Light Shining Through the Wall" experiments can probe the existence of "axion like particles" through their weak coupling to photons. We have adapted such an experiment to the microwave regime and constructed the table top apparatus. This work presents an overview of the experimental setup and then focuses on our latest measurement run and its results. By operating the apparatus within a superconducting MRI magnet, competitive exclusion limits for axion like particles to the first generation optical light shining through the wall experiments have been achieved.Comment: Contributed to the 9th Patras Workshop on Axions, WIMPs and WISPs, Mainz, June 24-28, 201

    Status report and first results of the microwave LSW experiment at CERN

    Full text link
    To detect or exclude the existence of hidden sector photons or axion like particles, a table-top "microwaves shining through the wall" experiment has been set up at CERN. An overview of the experimental layout is given, the technical challenges involved are reviewed and the measurement procedure including data-evaluation and its results to date are shown.Comment: Contributed to the 8th Patras Workshop on Axions, WIMPs and WISPs, Chicago, July 18-22, 201

    RF engineering basic concepts: S-parameters

    Full text link
    The concept of describing RF circuits in terms of waves is discussed and the S-matrix and related matrices are defined. The signal flow graph (SFG) is introduced as a graphical means to visualize how waves propagate in an RF network. The properties of the most relevant passive RF devices (hybrids, couplers, non-reciprocal elements, etc.) are delineated and the corresponding S-parameters are given. For microwave integrated circuits (MICs) planar transmission lines such as the microstrip line have become very important.Comment: 27 pages, contribution to the CAS - CERN Accelerator School: Specialised Course on RF for Accelerators; 8 - 17 Jun 2010, Ebeltoft, Denmar

    Status report of the CERN light shining through the wall experiment with microwave axions and related aspects

    Full text link
    One way to proof or exclude the existence of axion like particles is a microwave light shining through the wall experiment. In this publication we will emphasize on the engineering aspects of such a setup, currently under development at CERN. One critical point, to achieve meaningful results, is the electromagnetic shielding between axion-emitter and -receiver cavity, which needs to be in the order of 300 dB to improve over existing experimental bounds. The RF leakage or electromagnetic crosstalk between both cavities must be well controlled and quantified during the complete duration of the experiment. A very narrow band (in the 10^-6 Hz range) homodyne detection method is used to reveal the axion signal from background thermal noise. The current status of the experiment is presented.Comment: Contributed to the "7th Patras Workshop on Axions, WIMPs and WISPs", Mykonos June 26 - July 1 201

    First results of the CERN Resonant WISP Search (CROWS)

    Full text link
    The CERN Resonant WISP Search (CROWS) probes the existence of Weakly Interacting Sub-eV Particles (WISPs) like axions or hidden sector photons. It is based on the principle of an optical light shining through the wall experiment, adapted to microwaves. Critical aspects of the experiment are electromagnetic shielding, design and operation of low loss cavity resonators and the detection of weak sinusoidal microwave signals. Lower bounds were set on the coupling constant g=4.5⋅10−8g = 4.5 \cdot 10^{-8} GeV−1^{-1} for axion like particles with a mass of ma=7.2ÎŒm_a = 7.2 \mueV. For hidden sector photons, lower bounds were set for the coupling constant χ=4.1⋅10−9\chi = 4.1 \cdot 10^{-9} at a mass of mÎłâ€Č=10.8ÎŒm_{\gamma'} = 10.8 \mueV. For the latter we were probing a previously unexplored region in the parameter space

    Interactions of Microwaves and Electron Clouds

    Get PDF
    The modification of microwave signals passing through an electron cloud can be used as a diagnostic tool for detecting its presence and as a measure for its effective density. This observation method was demonstrated in pioneering measurements at the CERN SPS in 2003 with protons and at PEP-II in 2006 with positron beams in the particle accelerator field. Results and applications of this technique are discussed as well as limitations and possible difficulties. A strong enhancement of the electron related signals due to cyclotron resonance is theoretically predicted and has been observed in different machines. The application of this method can also be extended for space applications and plasma physics where microwave diagnostics is known and used since many years. The question whether suitably chosen microwaves might also be employed for electron-cloud suppression will be addressed. An electron cloud may also emit microwaves itself and the intensity of this emission depends on external parameters such as the electrical bias field and resonator frequencies related to trapped mode resonances in a beam-pipe
    • 

    corecore